Low Computational Cost for Sample Entropy
نویسندگان
چکیده
Sample Entropy is the most popular definition of entropy and is widely used as a measure of the regularity/complexity of a time series. On the other hand, it is a computationally expensive method which may require a large amount of time when used in long series or with a large number of signals. The computationally intensive part is the similarity check between points in m dimensional space. In this paper, we propose new algorithms or extend already proposed ones, aiming to compute Sample Entropy quickly. All algorithms return exactly the same value for Sample Entropy, and no approximation techniques are used. We compare and evaluate them using cardiac inter-beat (RR) time series. We investigate three algorithms. The first one is an extension of the kd-trees algorithm, customized for Sample Entropy. The second one is an extension of an algorithm initially proposed for Approximate Entropy, again customized for Sample Entropy, but also improved to present even faster results. The last one is a completely new algorithm, presenting the fastest execution times for specific values of m, r, time series length, and signal characteristics. These algorithms are compared with the straightforward implementation, directly resulting from the definition of Sample Entropy, in order to give a clear image of the speedups achieved. All algorithms assume the classical approach to the metric, in which the maximum norm is used. The key idea of the two last suggested algorithms is to avoid unnecessary comparisons by detecting them early. We use the term unnecessary to refer to those comparisons for which we know a priori that they will fail at the similarity check. The number of avoided comparisons is proved to be very large, resulting in an analogous large reduction of execution time, making them the fastest algorithms available today for the computation of Sample Entropy.
منابع مشابه
Estimation of the Entropy Rate of ErgodicMarkov Chains
In this paper an approximation for entropy rate of an ergodic Markov chain via sample path simulation is calculated. Although there is an explicit form of the entropy rate here, the exact computational method is laborious to apply. It is demonstrated that the estimated entropy rate of Markov chain via sample path not only converges to the correct entropy rate but also does it exponential...
متن کاملCoarse-Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy
Abstract: The evaluation of complexity in univariate signals has attracted considerable attention in recent years. This is often done using the framework of Multiscale Entropy, which entails two basic steps: coarse-graining to consider multiple temporal scales, and evaluation of irregularity for each of those scales with entropy estimators. Recent developments in the field have proposed modific...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملRemoval of Alizarin Red Dye Using Calcium Hydroxide as a Low-cost Adsorbent
Calcium ions have very strong affinity and binds effectively to alizarin red dye during staining of biomaterials. This promotes us to choose calcium hydroxide as a low cost adsorbent for the removal of alizarin red dye. Various parameters such as pH, concentration, dose of adsorbent, time, and temperature have been investigated. In addition, enthalpy, entropy, free energy and activation energy ...
متن کاملA Hybrid EEMD-Based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis
Abstract: Acoustic signals are an ideal source of diagnosis data thanks to their intrinsic non-directional coverage, sensitivity to incipient defects, and insensitivity to structural resonance characteristics. However this makes prevailing signal de-nosing and feature extraction methods suffer from high computational cost, low signal to noise ratio (S/N), and difficulty to extract the compound ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018